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How to automatically interpret components of arbitrary ViTs using a CLIP text encoder
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Visualization of Token-Component contributions
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DeiT 0.733 ! 0.815 0.874 ! 0.913
CLIP 0.507 ! 0.744 0.727 ! 0.790
DINO 0.800 ! 0.911 0.900 ! 0.938
DINOv2 0.967 ! 0.978 0.983 ! 0.986
SWIN 0.834 ! 0.871 0.927 ! 0.944
MaxVit 0.777 ! 0.814 0.875 ! 0.887
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Recent works have explored how individual components contribute to the 
final image representation of CLIP-ViT by leveraging the shared image-text 
representation of CLIP. Contributions of each individual component can be 
interpreted via text using the CLIP text encoder. However, there are 
challenges in extending this to arbitrary ViTs:

1. Lack of corresponding text encoder means that component 
contributions cannot be interpreted via text.

2. Significant manual effort is required to reconstruct these contributions 
for each model architecture as they are often not explicitly computed.

We thus introduce CompAlign, a method to align the contributions from 
each component to CLIP space to enable text-based interpretation, as well 
as RepDecompose, an algorithm which traverse the model’s computational 
graph to extract contributions in an architecture-agnostic manner. 

In general, there is no one-to-one mapping between components and 
image feature, therefore we introduce a scoring function to assign the 
importance of a feature to a given component and vice versa. Using this, 
we can perform tasks like image retrieval, token contribution visualization, 
and spurious correlation mitigation by carefully selecting or ablating 
specific components.
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Practical Applications


