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Abstract

Quantum interactive proofs are the quantum analogue of interactive proofs, in which a
powerful but untrusted prover attempts to convince a less powerful verifier of the correctness
of its computation. In quantum interactive proofs, we consider the case when either (or both)
the prover and verifier have quantum capabilities. In practice, we are concerned with the case
where the prover is a realistic quantum computer (BQP machine) trying to efficiently convince a
classical verifier (a BPP machine), which corresponds to the question: Can quantum computers
(efficiently) convince a classical verifier that its computations are correct over a polynomial
number of interactions? Recently, this question was settled in the affirmative [3], with the
assumption that the BQP prover cannot efficiently solve the learning with errors problem (LWE).
In this expository paper, I go over some key results in this field of quantum interactive proofs,
with a special focus on the landmark paper [3] by Urmila Mahadev.

1 Introduction

The field of quantum computing has been growing rapidly, with many theoretical and practical
advancements in recent years. It is widely believed that quantum computers have a significant
edge over their classical counterparts, and can solve efficiently problems like integer factoring and
quantum simulation in polynomial time. However, since we are dealing with a new more powerful
class of computers, it is natural to ask the question: How can an observer with access to a regular
classical computer (the verifier) be convinced that the powerful quantum computer (the prover) is
indeed performing the computations correctly? If this is not possible, it would be difficult for a
quantum computer to gain trust that it is indeed capable of powerful computations. This would
be easy if the powerful computer was an NP machine, we could just ask the prover to encode
the NP problem in 3-SAT and get the satisfying assignment as a certificate which the verifier can
verify. However, it is not known that BQP ⊆ NP, and it is widely assumed that this is not the
case. In fact, in the presence of access to an oracle, BQP can be separated from PH [9]. Another
problem is that unlike a classical computer, we can’t ‘look’ into the intermediate computations of a
quantum computer because of measurement collapse of the quantum state. Thus, we need to find
a verification method which can work when the prover can solve BQP problems efficiently.

One possible line of attack proposed in [5] is to construct an interactive protocol between the
prover and the verifier capable of convincing the verifier with a polynomial number of interactions.
Typically, repeated interactions are more powerful than a one-time interaction as this enables us to
use probabilistic guarantees which can be pumped up by repeated interactions. Thus, [2] introduced
a complexity class QPIP (quantum prover interactive proofs). In this class, we have languages
that can be verified in the following setup:
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1. A quantum prover, which can solve BQP problems in polynomial time. The prover also has
access to the quantum communication channel which can transmit κ bits at a time.

2. A hybrid quantum-classical verifier, which consists of a classical BPP machine and a quantum
κ-bit register on which the BPP machine can perform quantum measurements.

3. A classical communication channel which can transmit polynomial number of bits at a time.

A language can be said to be in QPIPκ (where κ is the number of qubits in the register) if
(a) for any YES instance the verifier accepts a proof from the prover, with a probability greater
than c, that the instance indeed belongs to the language, and (b) for any NO instance, the verifier
rejects any proof from the prover with probability greater than 1− s. c and s are constants which
parametrize the language QPIP. In [2] and [6], it was proved that for some constants c, s, κ ≥ 0,
QPIPκ = BPP.

However, there are still some caveats in this result that we need to keep in mind. The verifier
still has some quantum powers (2) and the prover can send quantum states through a quantum
communication channel (1). Ideally, we would want to relax these conditions, as we would like to
not rely on any quantum powers at all to verify the quantum computer. That is, we want to show
that QPIP0 = BPP.

Many papers tried to relax assumptions on the quantum verifier [4, 11] culminating with [3]
which showed a measurement protocol which did not require the verifier to have quantum powers.
This protocol is based on previous work by [4], which managed to weaken the verifier considerably
by restricting it to performing measurements only in the standard or Hadamard basis. Using a
cryptographic primitive considered to be hard to crack for quantum computers, we are able to
devise a protocol to force the quantum prover to perform the measurements by itself and report it
to the classical verifier.

2 Preliminaries

Before proceeding to the main proof, we need to introduce some crucial machinery and prerequisites.
The first piece is a cryptographic primitive for which the verifier has a key but the prover does
not, and which is believed to be hard for quantum computers to break based on the hardness of
learning with errors (LWE). The second piece is a work by [4], which showed that the verifier could
be restricted to performing only Hadamard or standard basis measurements on its register. The
protocol in [3] acts as an intermediate interface between the prover and the verifier in [4]

2.1 Cryptographic primitives

We first define a family of cryptographic primitives called trapdoor claw-free functions, or TCF
functions. These are two-to-one functions which are easy to invert given a secret trapdoor, but
hard otherwise. More formally, for a function f , it is hard to find x0, x1 for a given y such that
f(x0) = f(x1) = y, but easy given a trapdoor t. Equivalently, we can assume that we have a pair
of one-to-one functions f0, f1 such that they have the same image (For all x0, there exists x1 such
that y = f0(x0) = f1(x1)). These functions are hard to invert given y normally but easy given
a trapdoor. In [7], it is shown how to construct such a family based on the hardness of learning
with errors problem. It is believed that quantum computers cannot solve the learning with error
problem efficiently.
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Note 1

Learning with errors: This problem was first introduced by [8], and is a finite ring analogue
of the linear regression problem. Formally, consider an unknown linear function f : Zn

q → Zq

of the form f(x) = m · x + c and (x, y), where x ∈ Zn
q and y ∈ Zq, such that y = f(x) + e

where e ∈ Zq is drawn from a known noise distribution. Then, the problem is to estimate m
from the data.

Given a TCF f : A→ B, we can construct a quantum gate Uf which acts on 1√
|A|

∑
x∈A |x⟩|0⟩

to give 1√
|A|

∑
x∈A |x⟩|f(x)⟩. Measuring the second register, we get y ∈ B and we are left with

1√
2
(|x0⟩ + |x1⟩) in the first register such that f(x0) = f(x1) = y. Thus, a quantum computer is

able to obtain a superposition of x0 and x1, but not both at the same time. We can further apply
a Hadamard transform on each of the N = log2 |A| qubits in the first register, and thus obtain
1√
2
(HN |x0⟩+HN |x1⟩) = 1√

2
N+1 (

∑
d∈{0,1}N ((−1)d·x0 +(−1)d·x1)|d⟩). The coefficients of |d⟩ are non-

zero only if d ·x0 and d ·x1 have the same parity, or d · (x0+x1) = 0. Thus, the quantum computer
is able to sample d efficiently so that d · (x0 + x1) = 0, unlike a classical computer. However,
note that this still doesn’t mean that the quantum computer can hold any two of x0, x1, and d
simultaneously in an efficient manner. It was proven that doing so is as hard as solving the LWE
problem in [7], if f is TCF. The proof is too involved for this paper, but can be found in [7].

We now describe the cryptographic primitives we need more formally. Consider a trapdoor
claw-free function family F = {fk,b : X → Y} (b ∈ {0, 1}), such that it is computationally difficult
to find a claw (x0, x1) where fk,0(x0) = fk,1(x1) = y, but it is easy to invert these functions and
find a claw when given access to a trapdoor tk. We can construct such a family with two additional
hardcore bit properties:

1. First hardcore bit property : If d ̸= 0, then for all claws (x0, x1), it is hard to compute
both d · (x0 + x1) and either x0 or x1.

2. Second hardcore bit property : For each function pair fk,0, fk,1, there exists a string d
such that for all claws (x0, x1), the bit d · (x0 + x1) = ck is the same (depends only on k).
Furthermore, it is computationally hard to determine ck given fk,0 and fk,1.

Note 2

Construction of function family: Because it is hard to construct such a family with all
the desired properties, we actually have to consider the noisy versions of the above families,
where the output of function is not a single y but a distribution over y with some small
support. Formally, it is a function class F = {fk,b : X → DY}, where DY refers to the set of
distributions over Y. Detailed construction of these families can be found in [3, 7, 10]. We
will now assume that these families exist and are constructible.

The hardcore bit properties for TCF functions are important for proving the soundness of the
protocol and to ensure that that a BQP prover cannot cheat. We also require another family of
functions related to the TCF functions known as trapdoor injective functions. This is defined as
G = {gk,b : X → Y} where (b ∈ {0, 1}). It is computationally difficult to invert y = gk,b(x) given
y, but easy when given access to a trapdoor tk. Also, since it is injective, if (b, x0) ̸= (b′, x1),
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then gk,b(x0) ̸= gk,b(x1). It is possible to construct G such that it is computationally difficult to
distinguish it from F .

2.2 Interactive proofs when the verifier can perform restricted quantum mea-
surements

In [3], Mahadev shows how to reduce the class of languages which can be verified by performing
only X or Z measurements on a quantum state given by the BQP prover to the class of languages
which can be verified by a classically with only classical access to the quantum prover. This first
class of languages is known to contain BQP (proven in [4]). We now give a sketch of this proof
below.

Consider the 2-local Hamiltonian ground state problem which is QMA-complete, that is, there
exists a 2-local Hamiltonian for which there exists a low energy ground state iff the verifying circuit
accepts some witness state from Merlin. For BQP problems (which are also QMA problems), the
verifier is just the circuit which solves the problem by itself and ignores the witness state returned
by the prover. Thus, the witness state is not needed and can be assumed to be a trivial state. Using
the Feynman-Kitaev clock construction, we can encode the history of the BQP circuit computation
(with the language instance as only input) into a quantum state ρ, and this state ρ can be computed
efficiently by a BQP prover. To compute ρ, run the verifying circuit on the trivial state for n steps
to get the state |ψ⟩n and tensor product it with |n⟩ to get |ψ⟩n ⊗ |n⟩. Repeat for all n from 1 to
L where L is the length of the circuit, and add all of them to get ρ. This can be done efficiently
since L is only polynomial in input length. This state ρ is then handed to the verifier.

Now, it is known that the 2-local Hamiltonian can be written as a sum of tensor products with
only X and Z operators. Thus, we have the total Hamiltonian H =

∑
S dSS where dS is a real

number (scale factor) and S is the tensor product of some combination of I, X and Z with only
two operators not I. The verifier picks an S randomly with probability proportional to |dS | and
measures two qubits in ρ with respect to S using only standard or Hadamard basis measurements
to get s1 and s2. The verifier accepts if (−1)s1+s2 = −sign(dS). This procedure was proven to have
a significant acceptance probability in [11] and is thus able to verify if the ground state energy is
≤ a or ≥ b. The prover cannot cheat the verifier repeatedly for the same reason it cannot cheat in
the QMA version of the problem – the Hamiltonian includes all ways a cheater may try to cheat
using penalty terms.

3 Measurement protocol

We now relax the assumption that the verifier has a quantum channel and can perform quantum
measurements. Now, the prover has to perform the measurements according to the verifier’s in-
structions and report the results to the verifier classically. The verifier also needs to be convinced
that the prover is faithfully performing its measurements. We now give an outline of the protocol
below. It gives a method to reliably perform Hadamard and standard basis measurements on the
history state (for the 2-local Hamiltonian ground state problem) held by the prover. Once we have
this, we can use the verification procedure in [4] to verify any language in BQP.

3.1 Obtaining Hadamard basis measurements and testing the prover

1. The verifier samples a function pair f0, f1 and a trapdoor from the TCF family F and sends
the functions to the prover, while keeping the trapdoor secret.
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2. Commitment round: The prover entangles his ground state (history state for the 2-local
Hamiltonian ground state problem) |ψ⟩ = α0|0⟩ + α1|1⟩ with x0 and x1 and then partially
measures it as follows:

|ψ⟩ =
∑

b∈{0,1}

αb|b⟩ →
∑

b∈{0,1},x

αb|b⟩|x⟩|fb(x)⟩
Measure y=fb(x)−−−−−−−−−−→

∑
b∈{0,1}

αb|b⟩|xb⟩

(For simplicity, the normalization factor is omitted and can be inferred from the coefficients.)
Here, f(x0) = f(x1) = y. The prover then tells the verifier the measured y. We call y the
commitment string and |b⟩ the commitment bit. Since the prover “commits” to a particular
superposition of claws entangled with the history state, this is called a commitment round.

3. The verifier then uses its trapdoor and y to get x0 and x1, and then can proceed to either
‘test’ the prover, or ‘delegate Hadamard measurements’ to the prover. The verifier chooses
this at random.

4. Test round: If the verifier chooses to ‘test’, then it asks for a pre-image (b, xb) of y and
verifies if fb(xb) = y. If not, the verifier rejects the prover. If the prover passes the test
round, then at some point in the prover’s history, it held a superposition of pre-images of the
form

∑
|b⟩|xb⟩|y⟩, or just a single pre-image |b⟩|xb⟩|y⟩. This helps to ensure that the prover

does not deviate from intended behaviour.

5. Hadamard round: If the verifier chooses to ‘delegate Hadamard measurements’, it asks for
a Hadamard basis measurement of the ground (history) state |ψ⟩. To measure the ground
state in the Hadamard basis, the prover needs to apply a Hadamard transform on |ψ⟩ = αb|b⟩,
but it only has

∑
b αb|b⟩|xb⟩. Because of entanglement with |x0⟩ and |x1⟩, it is not possible

to directly measure the state |ψ⟩ in the Hadamard basis. Therefore, the prover applies the
Hadamard transform on the entire state (normalization factors omitted):

H
∑
b

αb|b⟩|xb⟩ =
∑
b

αbH|b⟩
∑
t

(−1)xb·t|t⟩

= α0(|0⟩+ |1⟩)
∑
t

(−1)x0·t|t⟩+ α1(|0⟩ − |1⟩)
∑
t

(−1)x1·t|t⟩

=
∑
t

(−1)x0·t(α0(|0⟩+ |1⟩) + α1(|0⟩ − |1⟩)(−1)(x0⊕x1)·t)|t⟩

The prover then measures |t⟩ to obtain d. The corresponding state will then be (ignoring
global phase):

α0(|0⟩+ |1⟩) + α1(|0⟩ − |1⟩)(−1)(x0⊕x1)·d =

{
(α0 + α1)|0⟩+ (α0 − α1)|1⟩ if (x0 ⊕ x1) · d = 0

(α0 + α1)|1⟩+ (α0 − α1)|0⟩ if (x0 ⊕ x1) · d = 1

= X(x0⊕x1)·dH|ψ⟩
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The prover then measures this state and sends the result h along with d to the verifier.
The verifier already has y, so it can get the claw (x0, x1) using the trapdoor and compute
d · (x0 ⊕ x1) using the trapdoor. It can then flip the bit if d · (x0 ⊕ x1) = 1 to recover back
the correct measurement. The probabilities are P (a) = 1

2 |α0 + (−1)aα1|2 which is identical
to the Hadamard basis measurement probabilities of |ψ⟩

3.2 Obtaining standard basis measurements

1. The verifier samples a function pair g0, g1 and a trapdoor from the trapdoor injective func-
tion family and sends the functions to the prover. Crucially, the prover cannot efficiently
distinguish between g0, g1 and f0, f1.

2. Commitment round: The prover entangles his ground state (history state for the 2-local
Hamiltonian problem)|ψ⟩ = α0|0⟩+ α1|1⟩ with x0 and x1 as follows:

|ψ⟩ =
∑
b

αb|b⟩ →
∑
b,x

αb|b⟩|x⟩|gb(x)⟩
Measure y=gb(x)−−−−−−−−−−→ |b⟩|xb⟩

Since gb(x) is injective, there is no superposition over states possible and there exists a unique
pre-image xb for each y. The prover has actually performed a standard basis measurement
on |ψ⟩ with P (b) = |αb|2. The prover then tells the verifier the measured y, who can then
invert g to obtain (b, xb), where b is the standard basis measurement.

3. The verifier goes through the motions as in the previous part, but it has no use for the prover’s
further measurements as the state has collapsed.

Thus, if the verifier measures the qubit in state |ψ⟩ = α0|0⟩+α1|1⟩ in the computational basis,
the probabilities are P (a) = |αa|2.

4 Proof of soundness

The goal of the measurement protocol is to get the prover to perform the measurements in the
Hadamard/standard basis by itself and then report the measurements to the verifier. However,
since the prover is not trusted, the measurements reported can also not be trusted as the prover
can simply fake its measurements. In particular, we need to show that there exists an underlying
quantum state ρ consistent with the measurements reported by the prover. The key idea is to use
the cryptographic primitive described (TCFs and TIFs) in 2.1 to make it hard for the prover to
fake the measurements.

To simplify the soundness proof, we assume that the history state is only 1 qubit large. The
generalization for n qubits follows by utilizing the fact that we can choose n different functions
independently, the full proof can be found in [3].

4.1 Proof sketch

The proof proceeds as follows. First, the behaviour of an arbitrary prover is characterized using two
unitary matrices. We then construct an underlying quantum state ρ for each prover which passes the
test round. We then prove that the distribution of the Hadamard/standard basis measurements on
this state ρ is computationally indistinguishable from the distribution of the Hadamard/standard
basis measurements for any prover which passes the test round with some restrictions on the
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unitary matrices which characterize the prover. This restriction is then relaxed to include all
unitary matrices. Thus, it is proved that there exists a well-defined underlying state ρ on which the
prover performs its measurements and reports them. After verifying whether this state ρ is indeed
low energy (by making Hadamard and standard basis measurements via the protocol in [4]), the
proof can be accepted with arbitrarily high confidence.

4.2 Characterizing prover behaviour

First note that the protocol can be broken down into rounds, where each round consists of a verifier
requesting something from the prover, and the prover giving some information to the verifier. The
key insight is that any general prover can be modelled as behaving like an honest prover but
applying an arbitrary unitary transformation to his state in each round. This implies that any
general prover can be thought of as measuring the same registers as the honest prover – doing
something else doesn’t give the prover additional power. We can thus characterize an arbitrary
prover by three unitary matrices (UC , UT , UH) corresponding to the transformations applied before
the commitment, test, or Hadamard rounds.

We can simplify this prover characterization a bit. Note that UT can be assumed to not act on
the register holding the commitment string - if it does, then we could copy the commitment string
to an auxiliary register before performing the measurement, and UT could act on this auxiliary
register. Therefore, UT commutes with the measurement of the commitment string, and can be
pushed before the measurement in the commitment round. After the commitment measurement,
the auxiliary register entangled with the commitment string also collapses to the same value, and
the output of the test round is the same as if UT had been applied after the measurement. Therefore,
the general prover applies a unitary U1 = UTU

honest
C UC before the commitment bit measurement,

and applies U2 = UHU
†
T before performing the Hadamard basis measurements, and does not do

anything in the test round. Here Uhonest
C refers to the unitary transformations applied by the honest

prover. Thus, we can characterize prover behaviour using a pair of unitaries (U1, U2).
The test round acts as a check on the prover state. Now, just before the prover applies U2 and

then measures in Hadamard basis, it has to maintain a superposition over the claw entangled with
the history state. That is, we can assume that the prover state before Hadamard measurement and
after reporting y (with pre-images xb,y) looks like this:∑

b

|b⟩|xb,y⟩|ψb,xb,y
⟩

where |ψb,xb,y
⟩ contains all additional qubits held by the prover. This is because the verifier

can be assumed to perform the test round honestly, as argued earlier. If the commitment round
was actually a standard basis measurement, the state is collapsed and resembles |b⟩|xy,b⟩|ψb,xb,y

⟩
for some random y, b with probabilities |αb|2.

4.3 Underlying quantum state

We need to show that for any general prover P, there exists a state ρ such that the distribution
of measurements Dh,ρ of this state in some basis h is computationally indistinguishable from the
measurements returned by the prover Dh,P for basis h. Let ρ′ be the state of the committed qubit
prior to the prover’s measurement in the Hadamard round. This ρ′ can be thought of as the true
history state ρ encoded with Zd·(x0,y⊕x1,y). We define ρ as the state that the prover measures in
the Hadamard round after being decoded by Zd·(x0,y⊕x1,y). Thus, D1,P = D1,ρ by construction.
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4.4 When U2 is X-trivial

Let U2 be X-trivial if it can commute with the standard basis measurement of the commitment
bit. To simplify notation, we will use equality to mean computational indistinguishability. We now
prove that if U2 is X-trivial, then D0,P = D0,ρ. Here, D0,ρ is the distribution over measurements
we would have obtained if we could perform standard measurement on the state ρ that the prover
obtains (encoded with a Z operator) in the Hadamard round.

There are two differences between D0,P and D0,ρ. First, when h = 0, the functions given to
the prover are trapdoor injective, but ρ is constructed using a trapdoor claw-free function pair.
Secondly, the prover measures the history state immediately in the commitment round via the
commitment bit, but ρ is only measured later in the Hadamard round after application of U2

(where Hadamard measurement is substituted with standard).
Note that if the measurement is in standard basis, the Z encoding doesn’t affect the measure-

ment. This means that to construct D0,ρ, we don’t need the trapdoor to decode the measurement.
Thus, we can replace the TCF pair f0, f1 ∈ F used for constructing ρ with trapdoor injective
pair g0, g1 ∈ G to obtain ρ0 instead of Zd·(x0,y⊕x1,y)ρ in the Hadamard round. Since f0, f1 and
g0, g1 are computationally indistinguishable and the Z encoding does not matter for standard basis
measurements, D0,ρ0 = D0,ρ.

We now have to show that D0,ρ0 = D0,P , where D0,P is the measurement via the commitment
bit in the commitment round. Recall that after the commitment bit measurement, the state
collapses to |b⟩|xy,b⟩|ψb,xb,y

⟩ (as verified in the test round), thus all further measurements will
reveal the same value reported to the verifier. Also, U2 is X-trivial and it commutes with this
standard basis measurement, so instead of measuring after applying U2 to the state, we could
measure it beforehand. Thus, D0,ρ0 = D0,P. Combined with D0,ρ0 = D0,ρ, we have D0,P = D0,ρ.
Therefore, D0,ρ is computationally indistinguishable from D0,P. Since D1,P = D1,ρ by construction,
Dh,P = Dh,ρ when U2 is X-trivial.

4.5 When U2 is arbitrary unitary

We now show that there exists P′ such that Dh,P′ is computationally indistinguishable from Dh,P,
where P′ is constrained to an X-trivial U2, but P is a general prover with arbitrary U2 which passes
the test round. Both P and P′ can be considered to have the same U1. For h = 0, U2 plays no part
in D0,P′ or D0,P, and U1 is the same in both cases. Therefore, D0,P is indistinguishable from D0,P′ .
We will now consider the case where h = 1, that is, the verifier chooses the Hadamard round.

Let U2 of P be denoted by U , and U2 for P′ be {Ux}x∈{0,1}. Here,

U =
∑

x,z∈{0,1}

XxZz ⊗ Uxz Ux =
∑

z∈{0,1}

Zz ⊗ Uxz

The decomposition for U is in terms of Pauli matrices and is completely general. The map
{Ux}x∈{0,1} is a equal mixture of Ux for x ∈ {0, 1}. It is completely positive and trace preserving.
Since each Ux is X-trivial (assuming that the committed bit register is first, corresponding to
Zz), the map {Ux}x∈{0,1} is also X-trivial. We now need to replace U with {Ux}x∈{0,1} and
simulate U in the Hadamard round to show the indistinguishability. This replacement can be
done using a construct called the Pauli twirl, which will allow us to replace {Ux}x∈{0,1} with

{ 1√
2
(Zz⊗I)U(Zz⊗I)}x∈{0,1}, which is the equal mixture of 1√

2
(Z⊗I)U(Z⊗I) and 1√

2
U . Observe

that if we replace the first map with 1√
2
U too, we get back U and we are done. We need to thus

show that if U is replaced by (Z⊗ I)U(Z⊗ I), the distribution over measurements Dh,P is changed
by a computationally indistinguishable amount.
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The proof strategy here is to show that if any algorithm A could could detect this change, it
would violate one of the hardcore bit properties outlined in 2.1. Intuitively, we need to exploit the
(apparent) randomness introduced by the Xd·(x1⊕x2) encoding in the Hadamard measurement step
and the entanglement of the history state with the claw in the commitment stage.

Note 3

Pauli twirl: The Pauli twirl is obtained when we conjugate a unitary operation
U using a random Pauli gate. Formally, a Pauli twirl of U would be denoted as
{(XxZz)†U(XxZz)}x,z∈{0,1} or {ZzXxU(XxZz)}x,z∈{0,1}. We will use a Z-Pauli twirl which

is { 1√
2
(Zz ⊗ I)U(Zz ⊗ I)}z∈{0,1}. It can be proven that this Z-Pauli twirl is equal to

{(Xx ⊗ I)Ux}x∈{0,1} (Proof in [3]). In the Hadamard round, the Xx has no effect on
the Hadamard basis measurement and the resulting distribution is identical to that of
{Ux}x∈{0,1}.

Let the distributions Dh,P and Dh,P′ corresponding to U and (Z⊗I)U(Z⊗I) be represented by
density matrices σ0 and σ1. Recall that if the prover passes the test round, the state |ϕy⟩ obtained
just after the commitment round is constrained to be in a superposition

∑
b |b⟩|xb,y⟩|ψb,xb,y

⟩. If
we form the density matrix |ϕy⟩⟨ϕy| and we perform the prover and verifier operations, we get
σ0 or σ1 depending on if the prover uses U or (Z ⊗ I)U(Z ⊗ I). We split σ0 = σD0 + σC0 and
σ1 = σD1 +σC1 . Here, σ

D
r and σCr are defined as what we get if the prover and the verifier operations

in the Hadamard round is applied to the diagonal and cross terms of |ϕy⟩⟨ϕy| respectively. This
decomposition is possible because quantum operations are linear. Notice that σDr is a legitimate
density matrix (trace is 1), but σCr (trace is 0) is not. If we now prove that (a) σD0 and σD0 are
computationally indistinguishable, and (b) the trace distance between σC0 and σC1 is computationally
negligible (i.e. cannot be amplified by a BQP machine), we prove that σ0 and σ1 is computationally
indistinguishable

4.5.1 Diagonal Terms

The creation of σD0 proceeds from the state represented by the diagonal terms of |ϕy⟩⟨ϕy|, that is,∑
b

|b⟩⟨b| ⊗ |xb⟩⟨xb| ⊗ |ψb,xb
⟩⟨ψb,xb

|

This initial state can be obtained by following the prover’s steps in the commitment round, measur-
ing the commitment bit b and the pre-image xb and throwing them away to zero out the off-diagonal
terms. The prover applies U , then measures in the Hadamard basis, and the verifier decodes using
its X operator. This state is σD0 , and if U is replaced by (Z⊗I)U(Z⊗I), it would be σD1 . The first
Z operation leaves the state unchanged, as there are only diagonal terms in the density matrix. The
second Z operation can be pushed through the Hadamard measurement to become X, therefore
the state σD1 = XσD0 X.

Now, consider any algorithm A′ which can distinguish between σD1 and σD0 . Then, we construct
A which violates the first hardcore bit property as follows. A first creates σD by following the
steps of the prover P but stops short of the verfier’s decoding. In the process, it obtains d, b, xb by
measuring respective registers. Now, it runs A′ on σD = σDr where r = d · (x0 ⊕x1), and thus finds
r. Thus A can compute d, b, xb, r = d · (x0 ⊕ x1), contradicting the first hardcore bit property (1).
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4.5.2 Cross Terms

We say that σC0 and σC1 are computationally distinguishable if the trace distance is not negligible,
that is |TrS(σC0 − σC1 )| is not negligible for some quantum map S. For the cross diagonal terms,
the first Z of (Z ⊗ I)U(Z ⊗ I) flips the phase to −1, and the second Z can be pushed through the
Hadamard measurement as before. Therefore, σC1 = −XσC0 X, and σC0 − σC1 = σC0 +XσC0 X.

Now, the map converting the cross terms of the initial state |ϕy⟩⟨ϕy| to σC0 is efficient except
for the Xd·(x1⊕x2) term of the verifier’s X decoding. But it is not necessary to perform this step
as σC0 +XσC0 X remains unchanged whether this step is included or not. Thus, there is an efficient
map from the cross terms of |ϕy⟩⟨ϕy| to σC0 − σC1 .

We now define σ̂r = (Zr ⊗ I)|ϕy⟩⟨ϕy|(Zr ⊗ I). It can be observed that

σ̂0 − σ̂1 = 2
∑
b

|b⟩⟨b⊕ 1| ⊗ |xb⟩⟨xb⊕1| ⊗ |ψb,xb
⟩⟨ψb,xb⊕1

|

which is nothing but 2 times the cross terms of |ϕy⟩⟨ϕy|. Thus, there is an efficient map between
σ̂0− σ̂1 and σC0 −σC1 . We now prove that if there is an efficient algorithm A′ which can distinguish
between σ̂0 and σ̂1 (equivalently σC0 and σC1 ), there exists A which violates the second hardcore bit
property (2).

Observe that for any arbitrary string d, we have

(I ⊗ Zd ⊗ I)
∑
b

|b⟩|xb,y⟩|ψb,xb,y
⟩ = (Zd·(x1,y⊕x0,y) ⊗ I ⊗ I)

∑
b

|b⟩|xb,y⟩|ψb,xb,y
⟩

Let A take any arbitrary string d and apply I ⊗ Zd ⊗ I on |ϕy⟩. This is equivalent to applying
Zd·(x1,y⊕x0,y) ⊗ I ⊗ I. It then runs A′ which can tell the value d · (x1,y ⊕ x0,y). Thus, A is able to
find d · (x1,y ⊕ x0,y) for any string d efficiently, which violates the second hardcore bit property.

We have now proven that there exists a well-defined ρ on which the prover reports its measure-
ments to the verifier. Whether this ρ is the correct low energy ground state (history state) will be
decided by the verification algorithm in [4]. This means that the protocol is sound – it will only
accept the proof if there is a appropriate history state ρ for which the ground state is low energy.

5 Conclusion

Thus, relying on the hardness of LWE for quantum computers, we are able to show that by using
the described protocol, the operations of a quantum computer can be verified using strictly classical
means by encoding the problem in a 2-local Hamiltonian. Using this protocol, we can be certain
that the prover was actually constructing the ground state and reporting the measurements on it
faithfully.
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